ON TODAY’S CALL

DR. CHRISTIAN THUN
CHIEF EXECUTIVE OFFICER, EUROPEAN DATAWAREHOUSE

✉ christian.thun@eurodw.eu

LUDOVIC THEBAULT, PHD
HEAD OF RESEARCH, EUROPEAN DATAWAREHOUSE

✉ ludovic.thebault@eurodw.eu

SERGIO MAYORDOMO, PHD
DIVISION HEAD, BANCO DE ESPAÑA

✉ sergio.mayordomo@bde.es
AGENDA

• INTRODUCTION
• PUBLICATIONS & RESOURCES
• EUROPEAN BENCHMARKING EXERCISE
• ADJUSTED DATABASE AND CALCULATED FIELDS
• LOAN PERFORMANCE VS ENERGY PERFORMANCE
• PERFORMANCE TRENDS
• CREDIT FIRE SALES: CAPTIVE LENDING AS LIQUIDITY IN DISTRESS - SERGIO MAYORDOMO (BANCO DE ESPAÑA)
• Q & A
BLOG ARTICLES
Concise, up-to-date articles & summaries: https://eurodw.eu/knowledge/magazine/
WEBINARS
Archive of slides and recordings: https://eurodw.eu/news-events-and-multimedia/events/
LIST OF PUBLICATIONS
List of all publications and research available on website with links: https://eurodw.eu/about-us/media-library/
Recently added: ESRB’s ‘Monitoring Systemic Risk in the EU Securitisation Market’ report
EUROPEAN BENCHMARKING EXERCISE
(PRIVATE SECURITISATIONS REPORT)
LUDOVIC THEBAULT, EUROPEAN DATAWAREHOUSE
EUROPEAN BENCHMARKING EXERCISE

Last year, EDW co-authored a report on private securitisations with AFME and TSI

- EDW collects loan-level data for private securitisations but...
- No loan-level data was used for the private securitisation report
- Instead, EBE participating entities provided us with aggregated data which we used to make the tables shown in the report

Table 2 - Underlying Exposure Distribution by Asset Type

<table>
<thead>
<tr>
<th>Asset Type</th>
<th>Asset Amount</th>
<th>Amount %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Receivables</td>
<td>88.097</td>
<td>51%</td>
</tr>
<tr>
<td>Auto Loan or Leasing</td>
<td>46.711</td>
<td>27%</td>
</tr>
<tr>
<td>Equipment Leasing</td>
<td>6.359</td>
<td>4%</td>
</tr>
<tr>
<td>Other</td>
<td>31.849</td>
<td>18%</td>
</tr>
<tr>
<td>Total</td>
<td>173.016</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 3 - Underlying Exposure Breakdown by Seller Country

<table>
<thead>
<tr>
<th>Seller Country</th>
<th>Asset Amount</th>
<th>Amount %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>41.355</td>
<td>24%</td>
</tr>
<tr>
<td>Great Britain</td>
<td>31.165</td>
<td>18%</td>
</tr>
<tr>
<td>France</td>
<td>21.926</td>
<td>13%</td>
</tr>
<tr>
<td>Italy</td>
<td>15.019</td>
<td>9%</td>
</tr>
<tr>
<td>else-EU27</td>
<td>14.855</td>
<td>9%</td>
</tr>
<tr>
<td>else-non EU27</td>
<td>33.327</td>
<td>19%</td>
</tr>
<tr>
<td>No data</td>
<td>15.369</td>
<td>9%</td>
</tr>
<tr>
<td>Total</td>
<td>173.016</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: European Benchmarking Exercise
ADJUSTED DATABASE (ECB DATA ONLY)

LUDOVIC THEBAULT, EUROPEAN DATAWAREHOUSE
ADJUSTED DATABASE REPORT
Available soon online, or email enquiries@eurodw.eu to request a copy
CALCULATED FIELDS
EDW calculated fields are added to the adjusted database

• They are calculated from the existing information
• They do not replace the existing information
• They make query design and execution easier and faster
• They will make integration of ECB and the ESMA data easier
• More are under way...

<table>
<thead>
<tr>
<th>GEO_1</th>
<th>Auto</th>
<th>Consumer</th>
<th>Credit Cards</th>
<th>Leasings</th>
<th>RMBS</th>
<th>SME</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>GEO_2</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>GEO_3</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>QTR_ED</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>COUNTRY_ED</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Model</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fuel_Type</td>
<td>WIP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Engine_size</td>
<td>WIP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
CALCULATED FIELDS
The following fields have been added:

• **COUNTRY_ED**
 - Is simply calculated from the EDCODE country indicator
 - Makes some queries simpler

• **Geographic names: GEO_1, GEO_2, GEO_3**
 - Calculated from the first digits of postcodes provided
 - Follows NUTS_1, NUTS_2, NUTS_3
 - NUTS optional for RMBS and SME in ECB reporting, but is standard in ESMA reporting

• **Quarter indicator: QTR_ED**
 - Data is provided monthly or quarterly
 - There is a risk to triple count deals that are reported monthly
 - Instead, select the submissions where QTR_ED is not NULL
SANITY CHECK FOR GEO_1, GEO_2, GEO_3

Generally, % of total loan amount outstanding should roughly mirror participation of country in GDP (e.g. France/RMBS)

<table>
<thead>
<tr>
<th>GEO_1</th>
<th>SUM AR67 Q4 2019 %</th>
<th>GDP Millions %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auvergne-Rhone-Alpes</td>
<td>12.6%</td>
<td>11.8%</td>
</tr>
<tr>
<td>Bourgogne-Franche-Comte</td>
<td>5.0%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Bretagne</td>
<td>3.4%</td>
<td>4.3%</td>
</tr>
<tr>
<td>Centre -- Val de Loire</td>
<td>4.1%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Corse</td>
<td>0.5%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Grand Est</td>
<td>7.9%</td>
<td>6.8%</td>
</tr>
<tr>
<td>Hauts-de-France</td>
<td>7.7%</td>
<td>7.2%</td>
</tr>
<tr>
<td>Ile-de-France</td>
<td>22.3%</td>
<td>31.7%</td>
</tr>
<tr>
<td>Normandie</td>
<td>4.7%</td>
<td>4.0%</td>
</tr>
<tr>
<td>Nouvelle-Aquitaine</td>
<td>8.7%</td>
<td>7.6%</td>
</tr>
<tr>
<td>Occitanie</td>
<td>9.5%</td>
<td>7.4%</td>
</tr>
<tr>
<td>Pays de la Loire</td>
<td>5.3%</td>
<td>5.1%</td>
</tr>
<tr>
<td>Provence-Alpes-Cote d'Azur</td>
<td>8.4%</td>
<td>7.1%</td>
</tr>
</tbody>
</table>

100.0% 100.0%
CALCULATED FIELDS IN THE AUTO ASSET CLASS

• Manufacturer
 • The current manufacturer field sometimes inaccurate
 • “Select distinct” on field AA44 (= manufacturer) = 112,000 results
 • There are not 112,000 manufacturers
 • “Select distinct” on calculated field “Manufacturer” = 96 results

• Model
 • Calculated from the actual content of AA45 and AA44
 • Standardised so it can be easily interpreted

• Fuel type
 • Work in progress: to be calculated from AA44 (manufacturer), AA45 (model), AA46 (engine size)

• Engine size
 • Work in progress
CALCULATING MANUFACTURER
Calculated using AA44 (manufacturer) and AA45 (car model)

• “Select distinct” on field AA44 = 112,000 results

• 10,451 different entries in AA44 for cars that are identified as Volkswagen in the manufacturer field
 • Content is often contradicted in AA44 by the content in AA45 (e.g. captive selling a second hand car from other manufacturer)

• 96% of all observations have a calculated manufacturer (else NULL)
CALCULATING MODEL
Calculated using AA44 (manufacturer) and AA45 (car model)

- “Select distinct” on field AA45 (car model) = 819,663 results
- 12,694 different entries in AA45 for cars that are identified as “Golf” in the model field (5.4%)
 - AA45 sometimes contains full description of the car, listing all the options, engine type etc
 - 374 models registered in field model
- 96% of all observations have a calculated manufacturer (else NULL)
NEXT STEPS
More calculated field additions are underway

• **Vehicle type**
 • 2.6M observations also available for motorcycles, 500k for recreational vehicles, etc.

• **Engine size**
 • Rough indication of power
 • First step for fuel type in some cases

• **Fuel type**
 • Would mention if vehicle is diesel, petrol, plug in, mild Hybrid, or electric
 • Based on clues found in fields AA44 (manufacturer), AA45 (model), AA46 (engine size)
 • TDI = diesel, TFSI = petrol, etc.
 • A specific engine size with 3 digits for a manufacturer often points to a specific engine, either diesel or petrol
LOAN PERFORMANCE VS ENERGY PERFORMANCE

USMAN JAMIL, EUROPEAN DATAWAREHOUSE
ESMA VS ECB DATA AVAILABILITY

- RMBS: Sum of All Mortgages Current Balances, Converted to EURO
- AUTO: Sum of All Auto/Leases Current Balances, Converted to EURO
- SME: Sum of All SMEs Current Balances, Converted to EURO
- LEASES: Sum of All Leases Current Balances, Converted to EURO
- CONSUMER: Sum of All Consumer Loans Current Balances, Converted to EURO
ENERGY PERFORMANCE CERTIFICATES ARE REQUIRED UNDER ESMA REGIME
ESMA Templates for loan-level data contain relevant fields for energy performance

- Fields RREC10 and RREC11 for underlying loans in RMBS:

<table>
<thead>
<tr>
<th>RREC10</th>
<th>Energy Performance Certificate Value</th>
<th>The energy performance certificate value of the collateral at the time of origination:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM (EPCA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BM (EPCB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CM (EPCC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DM (EPCD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EM (EPCE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FM (EPCF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GM (EPCG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other (OTHR)</td>
<td></td>
</tr>
</tbody>
</table>

| RREC11 | Energy Performance Certificate Provider Name | Enter the full legal name of the energy performance certificate provider. The name entered must match the name associated with the LEI in the Global Legal Entity Foundation (GLEIF) database. |

- Fields AUTL57 and AUTL58 for underlying loans in AUTO ABS:

<table>
<thead>
<tr>
<th>AUTL57</th>
<th>Energy Performance Certificate Value</th>
<th>The energy performance certificate value of the collateral at the time of origination:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM (EPCA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BM (EPCB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CM (EPCC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DM (EPCD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EM (EPCE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FM (EPCF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GM (EPCG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other (OTHR)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTL58</th>
<th>Energy Performance Certificate Provider Name</th>
<th>Enter the full legal name of the energy performance certificate provider. The name entered must match the name associated with the LEI in the Global Legal Entity Foundation (GLEIF) database.</th>
</tr>
</thead>
</table>
ENERGY PERFORMANCE CERTIFICATES – HOW MUCH DATA IS AVAILABLE?

Data availability for EPCs is stagnating

- **MORTGAGES**
 - Number of Loans Reporting a Valid EPC in ESMA

- **AUTO**
 - Number of Loans Reporting a Valid EPC in ESMA

- Mortgages With a Valid EPC
- Total Number of Mortgages
- % of Mortgages With an EPC (RHS)

- Auto Loans With a Valid EPC
- Number of Auto Loans
- %

SEPTEMBER 2022
LOAN PERFORMANCE VS ENERGY PERFORMANCE (ALL LTV CATEGORIES)
Making a performance chart using ESMA and ECB data

• French mortgages with historical data available in ECB format and recent data available in ESMA format (including non-NUL EPCs), and for which loan identifiers are the same in ECB & ESMA format
• B & C EPCs seem to perform better than D, E & F
INFLUENCE OF THE CLTV
The observation holds for several levels of CLTV and is strongest for high CLTVs.

Any Arrears Grouped by EPC - French Mortgages
All Delinquencies as % of All Outstanding where CLTV in 90-100%

All Arrears Grouped by EPC - French Mortgages
All Delinquencies as % of All Outstanding where CLTV in 80-90%

All Arrears Grouped by EPC - French Mortgages
All Delinquencies as % of All Outstanding where CLTV in 70-80%

B or better C D E F or worse

B or better C D E F or worse

B or better C D E F or worse
CAVEAT
More work is needed before drawing conclusions...

• Limitations
 • Too little data from too few data providers
 • Most properties in categories B & C reflect mostly new properties
 • An index should focus on one delinquency bucket only (e.g. 30-60 days arrears)
 • Quality limitations of the data in ESMA format

• How to improve the index
 • Add deals where EPCs are available but where loan IDs in ECB vs ESMA do not match
 • Add deals where no EPCs will become available
 • Compare EPC with other known factors that matter
OTHER RELATED OBSERVATIONS: EPC VS INCOME

EPCs reflect more than just energy performance

- French mortgages selected with historical data available in ECB format and recent data available in ESMA format (including non-NULL EPCs).
- CAVEAT: this is not a good index because many factors need to be considered.
OTHER RELATED OBSERVATIONS: URBAN CLASSIFICATION

- F & G EPCs can also be indicators of old, poorly maintained properties with high maintenance costs
- Urban vs Rural classification could also be relevant

Distribution of EPCs According to NUTS Rural vs Urban Classification
PERFORMANCE TRENDS

LUDOVIC THEBAULT, EUROPEAN DATAWAREHOUSE
INTEREST RATES INCREASING ACROSS EUROPE
Impact already evident in the UK where benchmark rate has risen from 0.1 to 1.75 since December

- Benchmark rates from national central banks rising across Europe
- Many borrowers with existing variable rate mortgages (or with expired fixed rate periods) have suddenly been faced with increased monthly payments.

![Weighted Average Interest Rates of Outstanding Mortgages by Country](chart.png)
LOOKING INTO RMBS DEALS
A one-month delinquency index is calculated for deals with data as of July

- One month in arrears is the delinquency indicator that would react first
- A relatively small sample, with €44 billion across 9 countries (47 deals)
- Mostly deals reporting on a January/April/July/October basis, Q3 = July
- The COVID wave of delinquencies is visible in Q2 (occurred in March, appears in April data)
- For now, no increase in delinquencies for mortgages as of July
LOOKING INTO AUTO DEALS
A one-month delinquency index is calculated for deals with data as of July

- One month in arrears is the delinquency indicator that would react first
- A relatively small sample, with €5 billion across 9 countries (17 deals only)
- Mostly deals reporting on a January/April/July/October basis, Q3 = July
- For now, no increase in delinquencies for Auto loans/leases as of July
CREDIT FIRE SALES: CAPTIVE LENDING AS LIQUIDITY IN DISTRESS

SERGIO MAYORDOMO, BANCO DE ESPAÑA
CREDIT FIRE SALES: CAPTIVE LENDING AS LIQUIDITY IN DISTRESS

Matteo Benetton\(^1\), Sergio Mayordomo\(^2\), Daniel Paravisini\(^3\)

\(^1\) University of California, Berkeley
\(^2\) Banco de España
\(^3\) London School of Economics

European DataWarehouse Webminar

DISCLAIMER: THE VIEWS EXPRESSED IN THIS TALK ARE SOLELY THOSE OF THE AUTHORS AND SHOULD NOT BE INTERPRETED AS REFLECTING THE VIEWS OF THE BANCO DE ESPAÑA OR THE EUROSYSTEM.
• Long-standing academic debate on the mechanisms through which financial shocks are transmitted to the economy

• Existing analyses of Global Financial Crisis focus on role of innovations in \textit{stand-alone financial institutions} (securitization, liability maturity shortening)

• Secular trend in the market for consumer credit: \textit{internalization of financial intermediation by durable good manufacturers}

 • Rise of captive finance companies for cars (Benmelech et al, 2017); real estate (Stroebel, 2016); equipment (Murfin and Pratt, 2019)

 “\textit{GM Financial is inherently cash generative during a downturn.}”

 — General Motors CFO, CNBC, May 11, 2020
Question:

- Does vertical integration of manufacturing and credit provision affects the propagation of financial shocks from manufacturers/lenders to consumers?

Context

- European car manufacturers and their integrated captive lenders

Approach

- Look at credit terms - lending standards by captive and stand-alone lenders (within car model - region - month), when manufacturer faces liquidity shortage
- Quasi-natural experiment: Volkswagen emissions scandal raised cost of funding of all manufacturers × fraction of bonds maturing
- Calibrated model for quantification and comparison with “traditional” fire sale
MECHANISM: IN RESPONSE TO A LIQUIDITY SHORTAGE...

Standalone manufacturer or lender
- **Borrow** (e.g. Credit lines)
- **Cut investment**
 - **Sell inventory**
 - **Change product price** (Fire Sale)

Integrated manufacturer-lender
- **Borrow** (e.g. Credit lines)
- **Cut investment**
- **Increase down payment**
- **Sell inventory**
- **Change product price** (Fire Sale)
- **Relax lending standards**

"A fire sale is essentially a forced sale of an asset at a dislocated price", Shleifer and Vishny (2011)

"A credit fire sale is a forced sale of an asset bundled with financing at dislocated contract terms"
Data and Descriptive Statistics

Credit Fire Sales: Stylized Evidence

Volkswagen Emission Scandal Quasi-experiment

Quantification of Credit Fire Sales

Conclusions
Data and Descriptive Statistics
• European Data Warehouse: Securitised car loans
 • Originated between Dec-2013 and Dec-2017
 • 9 captive lenders (e.g., Ford, Peugeot, Volkswagen)
 • 5 standalone banks (e.g., Santander, BNP Paribas)

• Analysis: **Used** car sales by manufacturers with captive lender
 • Focus on selling of inventory (ignore manufacturing costs)
 • 41% loans granted by stand-alones (new: only 6%)
 • 1.2M standard amortizing fixed-rate car loans to individuals (no leases)
 • Domiciled in France, Germany, Italy and Spain; 272 models/25 brands

• Additional data:
 • Lenders balance sheet at subsidiary level (SNL)
 • Car manufacturer CDS (Reuters)
 • Individual debt securities (Dealogic)
LOAN PORTFOLIO OF STANDALONE AND CAPTIVE LENDERS
DESCRIPTIVE STATISTICS BY LENDER TYPE

Panel A: Loan terms and car value

<table>
<thead>
<tr>
<th></th>
<th>Captive lenders</th>
<th></th>
<th>Diversified banks</th>
<th></th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Interest (%)</td>
<td>6.81</td>
<td>2.17</td>
<td>681,633</td>
<td>5.26</td>
<td>1.94</td>
</tr>
<tr>
<td>Maturity (Months)</td>
<td>47.98</td>
<td>17.38</td>
<td>681,633</td>
<td>55.22</td>
<td>19.89</td>
</tr>
<tr>
<td>Size (euro)</td>
<td>8,508</td>
<td>5,304</td>
<td>681,633</td>
<td>10,235</td>
<td>5,945</td>
</tr>
<tr>
<td>Car value (euro)</td>
<td>13,711</td>
<td>6,094</td>
<td>681,633</td>
<td>12,445</td>
<td>6,469</td>
</tr>
<tr>
<td>LTV (%)</td>
<td>64.22</td>
<td>30.41</td>
<td>681,633</td>
<td>85.13</td>
<td>25.71</td>
</tr>
</tbody>
</table>

Panel B: Ex - ante risk measures

<table>
<thead>
<tr>
<th></th>
<th>Captive lenders</th>
<th></th>
<th>Diversified banks</th>
<th></th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Income (euro)</td>
<td>36,352</td>
<td>9,479,542</td>
<td>640,971</td>
<td>35,180</td>
<td>69,096</td>
</tr>
<tr>
<td>Paid-employed (0/1)</td>
<td>0.82</td>
<td>0.38</td>
<td>681,633</td>
<td>0.80</td>
<td>0.40</td>
</tr>
<tr>
<td>Self-employed (0/1)</td>
<td>0.04</td>
<td>0.19</td>
<td>681,633</td>
<td>0.10</td>
<td>0.30</td>
</tr>
<tr>
<td>Unemployed (0/1)</td>
<td>0.02</td>
<td>0.14</td>
<td>681,633</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>Student (0/1)</td>
<td>0.01</td>
<td>0.09</td>
<td>681,633</td>
<td>0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>Pensioner (0/1)</td>
<td>0.11</td>
<td>0.31</td>
<td>681,633</td>
<td>0.10</td>
<td>0.30</td>
</tr>
<tr>
<td>Verified (0/1)</td>
<td>0.35</td>
<td>0.48</td>
<td>681,633</td>
<td>1.00</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Panel C: Ex - post risk measures

<table>
<thead>
<tr>
<th></th>
<th>Captive lenders</th>
<th></th>
<th>Diversified banks</th>
<th></th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>In arrears (0/1)</td>
<td>0.05</td>
<td>0.22</td>
<td>681,633</td>
<td>0.04</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Other Employment: Student, pensioner, unemployed or self-employed.

Seasoning: Securitization occurs only one year after origination, average seasoning is 15 months.
LOAN TERMS SUGGESTIVE OF CAPTIVE LENDER MARKET POWER

• Captive lenders offer worse terms than stand-alone banks
 • Higher rate, lower maturity, lower loan-to-value
 • Even after controlling for observable borrower characteristics and model/location/time

• Service differentiation (one-stop-shop, no income verification), provide credit to borrowers banks do not service, etc.

→ Scope for adjusting lending terms without being fully competed away by standalone banks (segmented markets, imperfect substitutes).
• Conditional on securitization
 • Manufacturer liquidity may also affect securitization probability
 • However, median loan is securitized 12 months (average 18) after issuance
 • Our focus: contemporaneous loan and CDS price variation
• Focus on the car financing
 • No data on contracts between manufacturer and dealers
 • Around 70% of European car dealers practice exclusive dealing (Nurski and Verboven, 2016)
Credit Fire Sales: Stylized Evidence
• Benchmark: Stand-alone lender, within model/region/time

• When Volkswagen’s CDS price increases...

• ... compare terms offered by Volkswagen Financial Services relative to Santander...

• ... to buy a Volkswagen Golf, in Madrid, in January 2017.
• α captures change in captive relative to stand-alone, in periods when the manufacturer CDS increases

$$y_{ilbmt} = \alpha \text{ Manuf. } CDS_{bt} \times \text{Captive lender}_l + \theta X_{ilt} + \gamma_l + \gamma_{bmt} + \epsilon_{ilbmt}$$

• **Dependent variables** y_{ilbmt} for a car loan to borrower i by lender l for brand-model b in market m at time t:

 • *Loan terms* (Rate, maturity, loan-amount) and car price
 • *Ex-ante risk measures* (income, verified, employment type)
 • *Ex-post risk measures* (arrears)

• γ_{bmt}: interacted brand-model, market and time fixed effects

• γ_l: lender fixed effects

• X_{ilt}: borrower and time-varying lender controls
• **Idea:** Manufacturer’s liquidity needs are higher at times when high fraction of existing bonds matures

• **Sample split:** Fraction of bonds expiring in t is in the top 75-th percentile of the distribution
MATURING BONDS: SAMPLE SPLIT

<table>
<thead>
<tr>
<th>Contract Terms</th>
<th>Lending Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>Income</td>
</tr>
<tr>
<td>(1)</td>
<td>(5)</td>
</tr>
<tr>
<td>Maturity</td>
<td>Other employment</td>
</tr>
<tr>
<td>(2)</td>
<td>(6)</td>
</tr>
<tr>
<td>Loan Size</td>
<td>Income verified</td>
</tr>
<tr>
<td>(3)</td>
<td>(7)</td>
</tr>
<tr>
<td>Car value</td>
<td>Arrears</td>
</tr>
<tr>
<td>(4)</td>
<td>(8)</td>
</tr>
</tbody>
</table>

Panel A: High liquidity need manufacturers

<table>
<thead>
<tr>
<th>Manuf. CDS × Captive Lender</th>
<th>0.292***</th>
<th>-0.032**</th>
<th>-0.040*</th>
<th>-0.002</th>
<th>-0.042***</th>
<th>0.020*</th>
<th>-0.117***</th>
<th>0.030***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0.069]</td>
<td>[0.014]</td>
<td>[0.023]</td>
<td>[0.018]</td>
<td>[0.009]</td>
<td>[0.012]</td>
<td>[0.031]</td>
<td>[0.010]</td>
</tr>
<tr>
<td>Avg Dep Var</td>
<td>6.18</td>
<td>3.867</td>
<td>8.895</td>
<td>9.422</td>
<td>9.983</td>
<td>.185</td>
<td>.564</td>
<td>.060</td>
</tr>
<tr>
<td>R^2</td>
<td>0.808</td>
<td>0.476</td>
<td>0.548</td>
<td>0.666</td>
<td>0.442</td>
<td>0.319</td>
<td>0.836</td>
<td>0.313</td>
</tr>
<tr>
<td>Observations</td>
<td>144,407</td>
<td>144,407</td>
<td>144,407</td>
<td>144,407</td>
<td>220,563</td>
<td>220,563</td>
<td>220,563</td>
<td>118,476</td>
</tr>
</tbody>
</table>

Panel B: Low liquidity need manufacturers

<table>
<thead>
<tr>
<th>Manuf. CDS × Captive Lender</th>
<th>0.113***</th>
<th>-0.004</th>
<th>-0.012</th>
<th>-0.003</th>
<th>0.005</th>
<th>0.021***</th>
<th>-0.040***</th>
<th>0.005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0.043]</td>
<td>[0.006]</td>
<td>[0.010]</td>
<td>[0.009]</td>
<td>[0.005]</td>
<td>[0.006]</td>
<td>[0.008]</td>
<td>[0.006]</td>
</tr>
<tr>
<td>R^2</td>
<td>0.824</td>
<td>0.442</td>
<td>0.554</td>
<td>0.659</td>
<td>0.486</td>
<td>0.334</td>
<td>0.904</td>
<td>0.319</td>
</tr>
</tbody>
</table>

Fixed effects:

- Model-Region-Time-Income: YES YES YES YES NO NO NO NO
- Model-Region-Time: NO NO NO NO YES YES YES YES
- Lender: YES YES YES YES YES YES YES YES
- Age-Time: NO NO NO NO NO NO NO YES

Additional controls:

- Lender-time: YES YES YES YES YES YES YES YES
- Borrower: YES YES YES YES NO NO YES YES

Credit score
Volkswagen Emission Scandal
Quasi-experiment
• Volkswagen Quasi-experiment:
 • Sep 2015: U.S. Environmental Protection Agency found “defeat device” in diesel-engine vehicles
 • Volkswagen: CDS price × 4; Other manufact.: CDS up 50% on average

• Idea: short-term CDS price change for other brands is due to aggregate uncertainty and not due to unobserved manufacturer-specific shock

• Implementation
 • Classify other brands into high- and low-liquidity needs using % of maturing bonds in Pre
 • High liq. need: Ford, Mercedes and Renault
 • Low liq. need: Toyota, Fiat, Opel, Peugeot and BMW
• Implementation (cont’d)

• Exclude all brands manufactured by VW group (Volkswagen, Audi, Porsche, Seat, and Skoda)

• Two-month window before (Pre) and after (Post) VW event

• For each subsample (high and low liquidity needs), estimate:

\[y_{ilbm} = \alpha \text{Post} \times \text{Captive}_l + \Theta X_{ilt} + \gamma_l + \gamma_{bmt} + \epsilon_{ilbm} \]
HIGH- AND LOW-LIQUIDITY NEEDS ~ ↑ IN CDS
CREDIT FIRE SALES DURING THE VOLKSWAGEN EMISSION SCANDAL

Panel A: High liquidity need manufacturers

<table>
<thead>
<tr>
<th></th>
<th>Contract Terms</th>
<th>Lending standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rate</td>
<td>Maturity</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Post × Captive Lender</td>
<td>0.359***</td>
<td>-0.088***</td>
</tr>
<tr>
<td></td>
<td>[0.094]</td>
<td>[0.022]</td>
</tr>
<tr>
<td>Avg Dep Var</td>
<td>5.716</td>
<td>3.916</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.867</td>
<td>0.428</td>
</tr>
<tr>
<td>Observations</td>
<td>21,811</td>
<td>21,811</td>
</tr>
</tbody>
</table>

Panel B: Low liquidity need manufacturers

<table>
<thead>
<tr>
<th></th>
<th>Contract Terms</th>
<th>Lending standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rate</td>
<td>Maturity</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Post × Captive Lender</td>
<td>0.013</td>
<td>-0.022</td>
</tr>
<tr>
<td></td>
<td>[0.080]</td>
<td>[0.016]</td>
</tr>
<tr>
<td>Avg Dep Var</td>
<td>5.716</td>
<td>3.916</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.763</td>
<td>0.409</td>
</tr>
<tr>
<td>Observations</td>
<td>28,549</td>
<td>28,549</td>
</tr>
</tbody>
</table>

Fixed effects:
- Model-Region-Time-Income: YES YES YES YES NO NO NO NO
- Model-Region-Time: NO NO NO NO YES YES YES YES
- Lender: YES YES YES YES YES YES YES YES
- Age-Time: NO NO NO NO NO NO NO YES

Additional controls:
- Lender-time: YES YES YES YES YES YES YES YES
- Borrower: YES YES YES YES NO NO YES YES
• Captive lenders neither increase nor decrease the number of cars financed (it applies to those with high and low liquidity needs)...

• …but those with high liquidity needs increase their share of low income borrowers relative to standalone lenders

<table>
<thead>
<tr>
<th>Manufacturer liquidity need</th>
<th>NUMBER OF CARS (LOG)</th>
<th>LOW INCOME BORROWERS (%)</th>
<th>LOW CREDIT SCORE BORROWERS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low (1) High (2)</td>
<td>Low (3) High (4)</td>
<td></td>
</tr>
<tr>
<td>Post × Captive Lender</td>
<td>0.028 [0.023] 0.019 [0.020]</td>
<td>0.004 [0.014] 0.025* [0.015]</td>
<td>0.028** [0.011]</td>
</tr>
</tbody>
</table>

Fixed effects:
- Model-Region-Time: YES YES
- Lender: YES YES
- Model-Time: NO NO
- Region-Time: NO NO
- Additional controls:
 - Lender-Time: YES YES
 - Borrower: NO NO

Avg Dep Var: .998 1.052 .484 .466 .158

R^2: 0.681 0.711 0.601 0.625 0.209

Observations: 11,755 7,393 11,755 7,393 10,781
• We calculate the **change in future revenue** implied by the (statistically significant) point estimates **using the average loan as a baseline**

• Despite the higher interest rate, **expected revenues decline by about €950** relative to the baseline due to **lower amounts and higher expected arrears**

• To **gain an additional €1 in cash today** high-liquidity-need manufacturers loose **€0.15 in expected future revenue over four years (3.8% annualized rate)**
Quantification of Credit Fire Sales
• Goal: benchmark the cash generated by a credit fire sale with cash generated by regular fire sale (lowering the price of cars)

• Why do we need some structure?
 - Too many margins changing for a simple back-of-the-envelope
 - Counterfactual world w/o captive not observed in the data

• Ingredients
 - Car market: differentiated producers
 - Credit market: high- and low-risk borrowers, segmented between captive and standalone lenders
 - Captives maximize joint lending + car sales profits

• Result
 - Average Credit Fire Sale creates same amount of cash than a 12% car price drop
Conclusions
CONCLUSIONS

- Identify and quantify **Credit fire sale**
 - An augmented version of an old mechanism
 - Distressed manufacturers/lenders improve cash position by changing loan terms and lowering lending standards
 - Open question: does it extend to trade credit?

- **Vertical integration** of manufacturing and financing changes how shocks to durable-good manufacturers affect credit and consumption
 - Negative shock leads to credit expansion to riskier borrowers
 - Short-run: mitigates real effect of shock
 - Long-run: more defaults imply distressed households and manufacturers
Appendix
WHY CAPTIVE LENDERS EXIST?

- **Price discrimination**
 - Vendor financing profitable for price discriminate between cash and credit customers (Brennan et al., 1988)

- **Asymmetric information**
 - Better product and/or customer knowledge, higher repossession value relative to other creditors (Banner, 1958; Petersen and Rajan, 1997; Stroebel, 2016)

- **Coase conjecture**
 - Manufacturers signal or commit to high future resale values for their product line (Murfin and Pratt, 2019)

- **Liquidity provision in distress**
 - Captive finance allows flexibility to adjust cash flow following shocks
• **Captive finance rationales**: Discrimination, information, Coase conjecture, search + source of liquidity
 - Brennan, Maksimovic, Zechner (1988); Stroebel (2016); Murfin and Pratt (2019); Argyle, Nadauld, Palmer (2018);

• **Car finance**: Effect of distress/regulation on supply + risk taking
 - Benmelech, Meisenzahl, Ramcharan (2017); Melzer and Schroeder (2017)

• **Fire sales**: liquidity shock dislocate asset prices + loan terms when asset bundled with financing
 - Pulvino (1998); Shleifer and Vishny (2010, 2011); Coval and Stafford (2007)

• **Lending channel**: liquidity shock tightens bank credit supply + reversed for captives
• Concern: Heterogeneous demand shift can deliver (some of the) same results
 • Suppose VW tests reduces demand by rich borrowers and increases demand by poor borrower
 • Cannot explain why captive lender terms deviate from bank for the same model-region-time..
 • But some complicated price discrimination story…

• One approach
 • Exclude VW event (CDS price change concurrent with demand shock)
 • Income/Employment/Verification/Car price bin fixed-effects
VW SCANDAL: LARGE "CDS", BUT SMALL # CAR SALES

• In Europe for Volkswagen cars relative to other brands
VW SCANDAL: LARGE "CDS", BUT SMALL # CAR SALES

- For Volkswagen cars both in Europe and US
Maturing Bonds: Sample Split – Credit Score

<table>
<thead>
<tr>
<th>Manufacturer liquidity needs</th>
<th>Low credit score borrowers (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
</tr>
<tr>
<td>Manuf. CDS × Captive Lender</td>
<td>0.021**</td>
</tr>
<tr>
<td></td>
<td>[0.010]</td>
</tr>
</tbody>
</table>

Fixed effects:
- Model-Time: YES
- Region-Time: YES
- Lender: YES

Additional controls:
- Lender-Time: YES
- Borrower: YES

<table>
<thead>
<tr>
<th>Avg Dep Var</th>
<th>0.153</th>
<th>0.149</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>0.179</td>
<td>0.234</td>
</tr>
<tr>
<td>Observations</td>
<td>44,650</td>
<td>106,714</td>
</tr>
</tbody>
</table>
CAR MARKET

• Manufacturers
 • N differentiated single-product producers (indexed by j)
 • Common marginal cost k and fixed cost K
 • Set price p_j to maximize profits

$$\Pi_j(p_1, \ldots, p_N) = (p_j - k)D_j(p_1, \ldots, p_N) - K$$

• Buyers (discrete choice)
 • M potential buyers (indexed by i)
 • Values car v_{ij}, drawn from iid distribution $f(v)$
 • Surplus from purchasing car j: $b_{ij} = v_{ij} - p_j$
 • Fraction purchasing car j given by:

$$\Pr(b_{ij} \geq \max_{k \neq j} b_{ik}) = \int_{k \neq j} \Pi[F(p_k - p_j + v)]f(v)dv$$
• Borrowers
 • Fraction γ is low risk (L), $1 - \gamma$ is high risk (H)
 • L always repays, H always defaults
 • Fraction goes to captive; $1 - \alpha$ to standalone

• Lenders
 • Borrow at rate r and incur origination cost c per $ loan
 • Observe signal s about borrower type from normal distribution
 $G_{L/H} \sim N(\mu_{L/H}, \sigma)$, where $\mu_L > \mu_H$
 • Obtain per $ profits:
 $$\Pi_b(s_b) = P(L|s)(i - r) + (1 - P(L|s))(d - r) - c$$
 • *where d is the recovery value in case of default*
 • Set interest rate $i < \bar{i}$ based on borrower signal s
 $$i(s) = \frac{(r + c) - (1 - P(L|s))d}{P(L|s)}$$
• **Loan Market**
 - Standalone bank acceptance threshold set profits = 0 at max rate \bar{r}
 \[
 \Pi_b(s_b) = 0 \rightarrow P(L|\bar{s}_b) = \frac{c + r - d}{\bar{r} - d}
 \]
 - Captive bank acceptance threshold set joint profits = 0 at max rate \bar{r}
 \[
 (p - k) + l\Pi_j(s_j) \rightarrow P(L|\bar{s}_j) = \frac{c + r - d - \frac{p - k}{l}}{\bar{r} - d}
 \]
 - Fraction of approved buyers:
 \[
 (1 - \alpha)\underbrace{[\gamma(1 - GL(\bar{s}_b)) + (1 - \gamma)(1 - GH(\bar{s}_b))]}_{\text{Approval rate standalone lender}} + \alpha[\gamma(1 - GL(\bar{s}_j)) + (1 - \gamma)(1 - GH(\bar{s}_j))]
 \]

• **Car Market**
 - Obtain number of manufacturer N and car price $p_j = p$ solving for symmetric Nash-Bertrand
Q&A
THANK YOU//CONTACT US

EUROPEAN DATAWAREHOUSE GMBH

Walther-von-Cronberg-Platz 2
60594 Frankfurt am Main

🌐 www.eurodw.eu
✉ enquiries@eurodw.eu
📞 +49 (0) 69 50986 9017

This presentation (the “Presentation”) has been prepared by European DataWarehouse GmbH (the “Company”) and is being made available for information purposes only. The Presentation is strictly confidential and any disclosure, use, copying and circulation of this Presentation is prohibited without the consent from the Company. Information in this Presentation, including forecast financial information, should not be considered as advice or a recommendation to investors or potential investors in relation to holding, purchasing or selling securities or other financial products or instruments and does not take into account your particular investment objectives, financial situation or needs. No representation, warranty or undertaking, express or implied, is made as to the accuracy, completeness or appropriateness of the information and opinions contained in this Presentation. Under no circumstances shall the Company have any liability for any loss or damage that may arise from the use of this Presentation or the information or opinions contained herein. Certain of the information contained herein may include forward-looking statements relating to the business, financial performance and results of the Company and/or the industry in which it operates. Forward-looking statements concern future circumstances and results and other statements that are not historical facts, sometimes identified by the words “believes”, “expects”, “predicts”, “intends”, “projects”, “plans”, “estimates”, “aims”, “foresees”, “anticipates”, “targets”, “May”, “will”, “should” and similar expression. The forward-looking looking statements, contained in this Presentation, including assumptions, opinions and views of the Company or cited from third party sources are solely opinions and forecasts which are uncertain and subject to risks.

SEPTEMBER 2022